Metastability, Lyapunov Exponents, Escape Rates, and Topological Entropy in Random Dynamical Systems
نویسندگان
چکیده
We explore the concept of metastability in random dynamical systems, focusing on connections between random Perron–Frobenius operator cocycles and escape rates of random maps, and on topological entropy of random shifts of finite type. The Lyapunov spectrum of the random Perron–Frobenius cocycle and the random adjacency matrix cocycle is used to decompose the random system into two disjoint random systems with rigorous upper and lower bounds on (i) the escape rate in the setting of random maps, and (ii) topological entropy in the setting of random shifts of finite type, respectively.
منابع مشابه
Entropy, Lyapunov Exponents and Escape Rates in Open Systems
We study the relation between escape rates and pressure in general dynamical systems with holes, where pressure is defined to be the difference between entropy and the sum of positive Lyapunov exponents. Central to the discussion is the formulation of a class of invariant measures supported on the survivor set over which we take the supremum to measure the pressure. Upper bounds for escape rate...
متن کاملSmooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics
Introduction 1 1. Lyapunov exponents of dynamical systems 3 2. Examples of systems with nonzero exponents 6 3. Lyapunov exponents associated with sequences of matrices 18 4. Cocycles and Lyapunov exponents 24 5. Regularity and Multiplicative Ergodic Theorem 31 6. Cocycles over smooth dynamical systems 46 7. Methods for estimating exponents 54 8. Local manifold theory 62 9. Global manifold theor...
متن کاملEntropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملLyapunov Spectrum of Asymptotically Sub-additive Potentials
For general asymptotically sub-additive potentials (resp. asymptotically additive potentials) on general topological dynamical systems, we establish some variational relations between the topological entropy of the level sets of Lyapunov exponents, measuretheoretic entropies and topological pressures in this general situation. Most of our results are obtained without the assumption of the exist...
متن کاملar X iv : 0 90 5 . 26 80 v 1 [ m at h . D S ] 1 6 M ay 2 00 9 LYAPUNOV SPECTRUM OF ASYMPTOTICALLY SUB - ADDITIVE POTENTIALS
For general asymptotically sub-additive potentials (resp. asymptotically additive potentials) on general topological dynamical systems, we establish some variational relations between the topological entropy of the level sets of Lyapunov exponents, measuretheoretic entropies and topological pressures in this general situation. Most of our results are obtained without the assumption of the exist...
متن کامل